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Abstract

Background: Emerging pathogens are a growing threat, but large data collections and approaches for predicting the
risk associated with novel agents are limited to bacteria and viruses. Pathogenic fungi, which also pose a constant
threat to public health, remain understudied. Relevant data remain comparatively scarce and scattered among many
different sources, hindering the development of sequencing-based detection workflows for novel fungal pathogens.
No prediction method working for agents across all three groups is available, even though the cause of an infection
is often difficult to identify from symptoms alone.

Results: We present a curated collection of fungal host range data, comprising records on human, animal and plant
pathogens, as well as other plant-associated fungi, linked to publicly available genomes. We show that it can be
used to predict the pathogenic potential of novel fungal species directly from DNA sequences with either sequence
homology or deep learning. We develop learned, numerical representations of the collected genomes and visualize
the landscape of fungal pathogenicity. Finally, we train multi-class models predicting if next-generation sequencing
reads originate from novel fungal, bacterial or viral threats.

Conclusions: The neural networks trained using our data collection enable accurate detection of novel fungal
pathogens. A curated set of over 1400 genomes with host and pathogenicity metadata supports training of machine-
learning models and sequence comparison, not limited to the pathogen detection task.

Availability and implementation: The data, models and code are hosted at https://zenodo.org/record/5846345,
https://zenodo.org/record/5711877 and https://gitlab.com/dacs-hpi/deepac.

Contact: jakub.bartoszewicz@hpi.de or bernhard.renard@hpi.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Many species of fungi are dangerous plant, animal or human patho-
gens. Importantly, even usually harmless opportunists can be deadly
in susceptible populations. For example, Candida albicans causes
common, relatively benign infections like thrush and vulvovaginal
candidosis, affecting up to 75% of women at least once in their life-
time and often re-occurring multiple times (Sobel, 2007). It is also
frequently found in healthy humans without leading to any disease
and has been reported to be capable of stable colonization
(Raimondi et al., 2019). However, invasive Candida infections, es-
pecially bloodstream infections, can reach mortality rates of up to
75%, rivaling those of bacterial and viral sepsis (Brown et al.,
2012). A related species, Candida auris, has been first recognized in
a human patient in 2009 (Satoh et al., 2009) and quickly became
one of the most urgent threats among the drug-resistant pathogens
(CDC, 2019), reaching mortality rates of up to 60% (Spivak and
Hanson, 2018). It might have originally been a plant saprophyte

which has adapted to avian, and then also mammalian hosts, pos-
sibly prompted by climate change (Casadevall et al., 2019).
Strikingly, it seems to have emerged in three different clonal popula-
tions on three continents at the same time, for reasons that currently
remain unexplained (Lockhart et al., 2017).

Even though fungal infections are estimated to kill 1.6 million
people a year, they remain understudied and underreported
(Chowdhary et al., 2016; Huseyin et al., 2017; No author, 2017).
Estimates suggest that between 1.5 million (Hawksworth, 2001)
and 5.1 million (Blackwell, 2011), or even 6 million (Taylor et al.,
2014) different species of fungi exist, but only a small fraction of
them has been sequenced. This poses a major challenge especially
for pathogen detection workflows based on next-generation
sequencing (NGS). Standard methods are based on recognition of
known taxonomic units by homology detection, using either se-
quence alignment (Ahn et al., 2015; Altschul et al., 1990; Andrusch
et al., 2018; Camacho et al., 2009; Hong et al., 2014; Langmead
and Salzberg, 2012; Li and Durbin, 2010; Li, 2018; Naccache et al.,
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2014), k-mer-based approaches (Breitwieser et al., 2018; Piro et al.,
2020; Wood et al., 2019) or combinations thereof (Piro et al.,
2017). This in turn requires curated databases of fungal, as well as
bacterial, viral and other species labelled with information regarding
the corresponding pathogenic phenotype or host information.
Limited host information is available in the NCBI Genome browser
(Sayers et al., 2021a), Database of Virulence Factors in Fungal
Pathogens (Lu et al., 2012) and the US National Fungus Collections
Fungus-Host Database (Farr and Rossman, 2021). Those resources
are partially complementary and none of them encompasses all the
available data. What is more, multiple literature sources describe
fungal pathogens and their hosts without referring to the corre-
sponding genomes, even if they are indeed available in databases
such as GenBank (Sayers et al., 2021b) or FungiDB (Basenko et al.,
2018), which store genomic data without clear-cut host annotation.
The ENHanCEd Infectious Diseases Database (EID2) (Wardeh
et al., 2015) aims to detect all ‘carrier’–‘cargo’ relationships, not
limited to fungi or pathogens specifically, although it does contain
fungal pathogens as well. It relies on automatically mining the ‘host’
field in NCBI Taxonomy (Schoch et al., 2020) and finding co-
occurrences of species names in articles indexed by PubMed (Sayers
et al., 2021a), providing links to the associated nucleotide sequen-
ces. This method is efficient and scalable, but automated processing
based on a concise set of simplifying assumptions may sometimes
lead to spurious results. Many ‘cargo’ and ‘carrier’ species can be
mentioned in the same paper even though one is not really a host of
the other. This is often the case in literature reviews, taxonomy
updates and holds also for this work. The ‘host’ field in a database
as large as NCBI Taxonomy may also contain outdated, inaccurate
or incomplete information. For example, Pneumocystis jirovecii, the
causative agent of deadly pneumocystis pneumonia, was previously
called Pneumocystis carinii. While the latter name is now reserved
for a species infecting exclusively rats and not humans (Stringer
et al., 2002), records in Taxonomy (and, possibly by consequence,
EID2) still list humans as the hosts of P.carinii at the time of writing.
What is more, many sequences included in EID2 are not genome
assemblies, but single genes, which are not enough for open-view
fungal pathogen detection based on shotgun sequencing. For this
and similar applications, a new resource is needed.

We compiled a collection of metadata on a comprehensive selec-
tion of fungal species, annotated according to their reported host
groups and pathogenicity. We store the metadata in a flat-file data-
base and link them to the corresponding representative (as defined
in GenBank) or reference genomes, if available. To showcase the
possible applications of the database, we model a scenario of novel
fungal pathogen detection. While to our knowledge, this is a first
systematic evaluation of feasibility of this task, we note that it mir-
rors similar problems in bacterial and viral genomics (Barash et al.,
2019; Bartoszewicz et al., 2020, 2021b; Bergner et al., 2021;
Brierley and Fowler, 2021; Deneke et al., 2017; Gałan et al., 2019;
Guo et al., 2021; Mock et al., 2020; Tang et al., 2015; Wardeh
et al., 2021; Zhang et al., 2019). We expect new agents to emerge
due to environmental changes, host-switching events and growing
human exposition to the unexplored diversity of potentially harmful
fungi, as shown by the example of C.auris. Further, advances in en-
gineering of fungal genomes (Amores et al., 2016; Burgess, 2017;
Dai et al., 2020; Luo et al., 2018; Martins-Santana et al., 2018;
Richardson et al., 2017; Szymanski and Calvert, 2018) could lead to
new risks and screening of synthetic sequences relies on of methods
developed originally for pathogen detection (Balaji et al., 2021;
Diggans and Leproust, 2019). Therefore, we evaluate if detecting
homology between previously unseen species and their known rela-
tives accurately predicts if a DNA sequence originates from a novel
fungus capable of colonizing and infecting humans. BLAST
(Altschul et al., 1990; Camacho et al., 2009) represents the gold
standard in pathogen detection via taxonomic assignment to the
closest relative. Although read mappers or k-mer-based taxonomic
classifiers are more computationally efficient on large NGS datasets
(Alser et al., 2021; Breitwieser et al., 2019; Ye et al., 2019), BLAST
has been shown to be more accurate in similar tasks of detecting
novel bacterial and viral pathogens (Bartoszewicz et al., 2021b;

Deneke et al., 2017). However, convolutional neural networks of
the DeePaC package have been proven to outperform BLAST in
both those scenarios (Bartoszewicz et al., 2020, 2021b) for both iso-
lated NGS reads and full genomes, and a recently presented variant
of residual neural networks (ResNets) outperforms all alternatives
on short NGS reads and their fragments (Bartoszewicz et al.,
2021a). We trained similar ResNets to predict if a novel DNA se-
quence originates from a human-infecting fungus. To visualize the
dataset, we developed trained numerical representations of all
genomes in the database.

2 Materials and methods

2.1 Data description
We collected metadata on species infecting humans, animals or
plants, supplemented with information on other plant-associated
species. To this end, we integrated multiple literature and database
sources (see Supplementary Information for citations), relying on
manual curation, but also including the automatically extracted
data for future reference. Supplementary Table S1 summarizes the
data we collected for each species. We describe the curation proced-
ure in detail in Supplementary Note S1. The database contains
14 555 records in total. Here, we will focus on what we will call the
core database, comprising metadata on genomes of 954 manually
confirmed pathogens (including 332 species reported to cause dis-
ease in humans), available on October 9, 2021. This forms a collec-
tion of species most relevant to the pathogen detection task,
belonging to 6 phyla, 37 classes, 82 orders and 182 families. A ‘tem-
poral benchmark’ subset contains 15 further pathogens (including
one infecting humans), collected in a database update on January 2,
2022. We also include records on 486 plant-associated fungi. The
supplementary part of the database contains information on 481 pu-
tatively labelled genomes, 1147 unlabelled species with available
genomes, 8 synonyms (with 6 alternative genomes) derived from the
Atlas of Clinical Fungi (de Hoog et al., 2020), 885 labelled species
without genomes (including 284 species without TaxIDs) and
10 579 putatively labelled species without genomes (including 9
without TaxIDs). This subset will enable easy updating of the data-
base in the future, as more genomes of already labelled species are
sequenced. It also serves as a record of all screened genomes and spe-
cies to ensure reproducibility and facilitate future extensions (e.g.
adding new data or sources of evidence). Supplementary Figure S1
presents the numbers of genomes with manually confirmed labels
and genomes for which putative labels could be found in EID2
(Wardeh et al., 2015).

2.2 Training, validation and test sets
While we envision a wide range of possible applications of the data-
base, we present example usecases allowing one to take advantage
of the wealth of collected data—detection of novel fungal pathogens
from NGS data. The core of the database contains 332 genomes of
human pathogens (including opportunists), forming the positive
class. The negative class comprises 622 species not reported to infect
humans; this includes 565 plant pathogens and 58 non-human ani-
mal pathogens. To evaluate the performance of the selected patho-
genic potential prediction methods, we divided the corresponding
genomes into non-overlapping training, validation and test sets. In
this setup, the training set is used as a reference database for the
methods based on sequence homology and to train the neural net-
works, while the performance metrics are calculated on the held-out
test set. The validation set is used for hyperparameter tuning and to
select the best training epoch. While evaluating performance on
genuinely unknown species is by definition impossible, we effective-
ly model the ‘novel species’ scenario by testing on a wide range of
sequences removed from the database, including selected important
species (Brown et al., 2012; Dean et al., 2012; Satoh et al., 2009;
Scheele et al., 2019; Skamnioti and Gurr, 2009). We simulated low-
and high-coverage read sets using a protocol outlined in
Supplementary Note S2 (Holtgrewe, 2010). We considered two
methods of balancing the number of samples between taxa: setting
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the read number per species to be proportional to the respective
genome’s length (‘linear-size’) or its logarithm (‘logarithmic-size’).

2.3 Phenotype prediction and genome representations
Next, we evaluated the feasibility of pathogenic potential prediction
for novel fungal species. We used a ResNet architecture imple-
mented in the DeePaC package, previously shown to outperform
alternatives based on deep learning, traditional machine learning
and sequence homology in the context of novel bacteria and viruses
(Bartoszewicz et al., 2021a). We also adapted a BLAST-based pipe-
line used by Bartoszewicz et al. (2020) for benchmarking. Details of
the pipeline, the ResNet architecture, hyperparameter tuning and
the evaluation procedures for read pairs and genomes are described
in Supplementary Note S3.

To visualize the structure of the dataset as learned by the trained
classifier, we developed numerical representations for the collected
genomes. This poses a challenge, as the networks are trained on reads
rather than full genomes. However, we observe that final outputs of
the network can be averaged over all reads originating from a single
genome to generate a prediction for the genome in question
(Bartoszewicz et al., 2020). Analogously, we can average the activa-
tions of the intermediate layers to construct vector representations for
whole genomes based on the corresponding reads. Note that averaging
the activations of the penultimate layer is approximately equivalent to
using a full genome as input (assuming full coverage), as our architec-
ture uses global average pooling just before the output layer. Classifier
outputs based on average activations indeed approximate classifier
outputs averaged over all reads originating from a given species (see
Supplementary Note S4 and Supplementary Figs S2 and S3). Hence,
we extracted penultimate activations for all simulated reads in the low-
coverage, ‘linear-size’ training, validation and test sets. We then used
the averaged activation vectors for each species to map the distances
between them as learned by our networks. We used UMAP (McInnes
et al., 2020) to visualize the dataset (Supplementary Note S6).

2.4 Multi-class evaluation
Finally, we investigated an application requiring merging the ‘positive’
subset of our database with previously available resources for patho-
genic potential prediction in bacteria and viruses. We aimed to inte-
grate the separate classifiers for fungi, bacteria and viruses into a
single, multi-class model capable of predicting whether unassembled
NGS reads originate from (possibly novel) pathogens present in a
human-derived sample. To this end, we extended the DeePaC package
adding the multi-class classification functionality. The resulting archi-
tectures differ from the previously described ResNets (Bartoszewicz
et al., 2021a) only by the output layer, which has as many units as the
number of considered classes and uses a softmax activation (see
Supplementary Note S3). In practice, only human-hosted fungi are
expected to be found in clinical samples. In this context, a slightly con-
strained view is admissible: we assume that only human-pathogenic
fungi, human-hosted bacteria (pathogenic or commensal), human
viruses and non-human viruses (mainly bacteriophages) will be pre-
sent in the sample. Further, bacteriophage sequences tend to be very
similar to the sequences of their bacterial hosts (Zielezinski et al.,
2021; Zielezinski et al., 2022) and difficult to differentiate, but both
commensal bacteria and non-human viruses can be viewed here as a
joint ‘negative’ (i.e. harmless) class. Hence, learning a precise decision
boundary between them can be omitted. Human reads can be ignored,
as they can be relatively easily filtered out with traditional methods
based on read mapping or k-mers (Ahmed et al., 2021; Loka et al.,
2018; Wood et al., 2019). Therefore, we fused the previously pub-
lished datasets used in DeePaC (Bartoszewicz et al., 2021a) for bac-
teria (pathogens versus commensals) and viruses (human versus non-
human) with the ‘positive’ (human-pathogenic) class of our database
(Supplementary Notes S2 and S3). The final result is a dataset divided
into four classes: nonpathogenic bacteria and non-human viruses, bac-
terial pathogens, human-infecting viruses and human-pathogenic
fungi, in either the ‘linear-size’ or the ‘logarithmic-size’ variant. Note
that even in this case, the ‘negative’ part of the presented database is
useful, allowing us to constrain our view to a curated set of clinically

relevant fungi only. Using this dataset, we trained two models includ-
ing all four classes (using the ‘linear-size’ or the ‘logarithmic-size’ vari-
ant of the fungal training set). We further evaluated the one resulting
in higher validation accuracy and a simple ensemble averaging the
predictions of both models. Then, we trained a three-class model
including only the bacterial and viral classes. This allows us to meas-
ure the ‘difficulty’ of integrating the fungal dataset with the others
within a single network in terms of resulting differences in prediction
accuracy on the original DeePaC datasets. By comparing the perform-
ance of our models to the performance of the original binary classi-
fiers (Bartoszewicz et al., 2021a), we can disentangle the ‘difficulty’ of
adding the fungal class from the ‘difficulty’ of integrating the bacterial
and viral classes, and assess how much performance is ‘lost’ by using
a more open-view classifier. Note that in the case of the purely viral
dataset, spurious assignments to the bacterial pathogens class may be
treated as detection of bacteriophages infecting the bacterial species of
this class and hence reassigned into predictions for the non-pathogen
class by adding the predicted probabilities for both classes. This effect-
ively merges the non-pathogen and bacterial pathogen classes at test
time when appropriate, but still keeps the possibility to use the trained
networks in a fully open-view setting (with all classes) without the
need for retraining. We performed an additional comparison to
BLAST with a pre-selected training database [bacterial for bacteria
(Bartoszewicz et al., 2020) and viral for viruses (Bartoszewicz et al.,
2021b)]. This resulted in an estimated upper bound on the perform-
ance of non-machine-learning approaches on those datasets (as
extending the training database with irrelevant reference genomes can
only lower BLAST’s performance). Finally, we evaluated the neural
networks on the full dataset of all four classes and a real C.auris
sequencing run. We also analysed the latter with STAT (Katz et al.,
2021), used by the SRA database (Supplementary Note S7).

3 Results

3.1 Fungal pathogenic potential prediction
The best network, trained on the high-coverage, ‘logarithmic-size’
dataset without dropout, required 8 days of training on four Tesla
V100 GPUs and was selected for further evaluation. Proper retuning
of the classification threshold for species-level predictions appears to
be a necessary step for an independent, viral dataset (Supplementary
Table S2), so we also retuned the threshold (0.46 instead of the de-
fault 0.5) for the respective fungal ResNet setup. Overall, prediction
accuracy for reads and read pairs is suboptimal for both BLAST and
the ResNet, probably reflecting the extreme difficulty of the task
(Supplementary Note S5 and Supplementary Table S3). The error
estimates based on the held-out test dataset are consistent with the
results of the temporal benchmark (Supplementary Table S4).
Balanced accuracy is much higher on full genomes (88.4–90.3), sug-
gesting that the main performance bottleneck is the total amount of
information (total sequence length) available as input. This is con-
sistent with previous observations (Bartoszewicz et al., 2020,
2021b; Deneke et al., 2017), although more drastic than in the case
of bacteria or viruses. All approaches correctly classify the single
human pathogen in the temporal benchmark dataset, but the
ResNet achieves higher specificity (92.9) than read-based (78.6) and
contig-based BLAST (85.7). Despite the low coverage, the test set
seems to be indeed representative. The genome-wide predictions are
equally accurate if all test reads are used and when only a half of the
dataset (corresponding to either the first or the second mate) is ana-
lysed. Therefore, computations for single-species samples can be
sped up by considering first mates only, as they are enough to deliver
an accurate prediction. Strikingly, this is the case even though they
correspond to a mean coverage below 0.08. As a result, the read-
based ResNet yields only slightly less accurate predictions than
contig-based BLAST, but requires 700-fold less time if a GPU is used
(Supplementary Note S5 and Supplementary Table S3).

3.2 The landscape of fungal pathogenicity
Good overall accuracy of the ResNet is reflected in the visualization
of learned genome representations for the entirety of the core
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database. Figure 1 and Supplementary Figures S4–S10 present UMAP
embeddings of the extracted representations for all labelled genomes,
that is, a sum of the training, validation and test datasets. Although
some noise is present, the positive and the negative class are mostly
separated. Several clusters of human pathogens and non-human
pathogens are present. The ResNet correctly recovers most of the
labels, including many of the ‘positive’ members of the otherwise
‘negative’ clusters (Supplementary Fig. S5). To measure this, we visu-
ally identified 14 clusters, which could be easily retrieved automatical-
ly using single-linkage agglomerative clustering (Supplementary Fig.
S10). Cluster purity for the whole dataset was high (0.90). We also
measured it for the members of the large, mixed clusters 4 (pink in
Supplementary Fig. S10) and 6 (red in Supplementary Fig. S10), which
achieved purity of 0.85 and 0.88, respectively. Classification errors
seem to originate from an interpolation based on neighbouring data
points—within clusters, the predicted labels are more homogeneous
than the ground truth annotations. This is expected, as the clusters
represent similarity in the space of learned representations. The net-
work should in general assign similar labels to inputs similar in this
space. In contrast, BLAST works analogously to a k-nearest neigh-
bours classifier in the input sequence space (finding the single closest
match for each query). The ResNet, interpolating between multiple
data points, may be less efficient in modelling situations where a small
set of ‘negative’ data points is embedded within a larger ‘positive’ clus-
ter of similar species or vice versa. This hypothesis is supported by the
visualization of BLAST-predicted labels in the learned representation
space (Supplementary Fig. S6). BLAST recovers mixed, contrasting
labels within cluster more accurately and its errors seem to be more
evenly distributed across the space. At the same time, its slightly lower
sensitivity is especially visible within the diverse Sordariomycetes class
placed in the rightmost cluster. The clusters themselves are noticeably
related to the taxonomic units represented in the database, although
this is importantly not a simple one-to-one mapping (Supplementary
Note S6 and Supplementary Figs S7–S10).

3.3 Multi-class models
For the final evaluation of our database, we aimed to develop a
model capable of classifying NGS reads originating from novel
viruses, bacterial and fungal species into appropriate pathogen
and non-pathogen classes. We trained the multi-class ResNets on
data including four classes (human-pathogenic fungi, bacterial

pathogens, human viruses and non-pathogens). The network trained
on the dataset containing the ‘logarithmic-size’ version of the
fungal positive class achieved slightly better validation accuracy and
was selected for further evaluation, but the difference was small
(<0.5%). We then evaluated a simple ensemble of both four-class
ResNets. First, we used the DeePaC datasets consisting of bacteria
and viruses to compare the four-class models to a classifier including
the three non-fungal classes only, as well as the binary ResNets
(Bartoszewicz et al., 2021a) and BLAST. This procedure allows us
to (i) measure the effect of integrating the fungal dataset with the
bacterial and viral data in one task and (ii) disentangle the effects of
adding the fungal data from the effects of merging the bacterial and
viral datasets. We expected the fungal sequences to be relatively
easy to differentiate from the others, but whether the ResNet archi-
tecture would be expressive enough to accurately represent all those
diverse sequences was unclear. As shown in Supplementary Table
S5, integrating the fungal dataset with three bacterial and viral
classes indeed does not negatively influence the prediction accuracy.
BLAST, using an appropriate reference database and representing
the estimated upper bound on performance of homology-based
approaches, is still outperformed by a significant margin. The fungal
dataset can be integrated with the other classes without causing any
significant performance hits on the full, multi-class dataset as well
(Supplementary Table S6). Consistently with the results presented in
Supplementary Table S5, performance is lower on the non-pathogen
class, since many bacteriophage reads can be confused with patho-
genic bacteria. While this issue requires further research, we expect
future solutions to remain compatible with our database. The four-
class ensemble achieves the most balanced performance on non-
pathogen data, the best recall on fungal reads and is also the most
accurate overall, cutting the average error rate by over 40% com-
pared with BLAST (Table 1). As expected, distinguishing human-
pathogenic fungi from the other classes is easier than predicting
fungal hosts, so the performance of both BLAST and the ResNet is
higher than in Supplementary Table S3. This holds also for real data
(Supplementary Note S7 and Table 2). If the correct reference gen-
ome is missing, STAT is unable to classify most of the reads (Table 2
and Supplementary Table S7). This is true even though genomes of
related species are present in the database. The ResNets perform
markedly better than BLAST. Although the simulated test sets are
more representative and effectively model mock metagenomic

Fig. 1. UMAP embeddings of the learned genome representations for the core database, enlarged in Supplementary Figure S4. Each point represents a genome of a single spe-

cies, coloured by its ground truth label. The learned representations offer a way of visualizing the core database along relevant labels for each genome. The ResNet correctly

classifies most of the genomes (Supplementary Fig. S5). The clusters are related, but not fully reducible to the taxonomic classification of the analysed species (Supplementary

Note S6 and Supplementary Figs S7–S10)
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samples, this case study shows that our methods accurately classify
real data as well. The database enabled us to accurately predict
whether NGS reads originate from novel pathogens.

4 Discussion

Fungal pathogens have been under-studied compared with human-
infecting bacteria and viruses, leading to repeated calls for more re-
search in this area (Huseyin et al., 2017; No author, 2017). What is
more, a large part of the research effort has been focused on plant
pathogens due to their agricultural significance. A subset of them
could in principle also have an unreported or undetected ability to
infect a human host. An analogous problem applies also to incom-
plete data regarding pathogenicity towards non-human animals or
plants. For this reason, we do not claim that species not listed as po-
tential pathogens are indeed non-pathogens. In our database, we in-
clude confirmed labels alongside appropriate sources; in the case of
lack of evidence, we treat the respective label as missing. It is there-
fore possible that some of the fungi currently labelled as ‘non-human
pathogens’ would have to be reclassified as the state of science
evolves. This may be especially important as it has been suggested
that the ongoing climate change will lead to more frequent host-
switching events, including expansion of host range to mammals,
which are usually relatively resistant to fungal infections (Garcia-

Solache and Casadevall, 2010). Even though the very goal of the
presented classifiers is to generalize to newly emerging species, large,
comprehensive datasets are crucial—often more important than the
actual analysis method used. This has been shown before for meta-
genomic data (Piro et al., 2020) and likely applies to the tasks ana-
lysed here as well. Therefore, extending the database to include
more species, as more genomes are sequenced in the future, could fa-
cilitate the downstream tasks. To support future extensions, we in-
clude all considered species in the database—even those without
assigned TaxIDs, genomes or labels (in the case of screened
GenBank genomes). This broadens the scope of the data from 1455
labelled genomes to over 14 500 records, enabling easy labelling of
newly published genomes and minimizing the workload needed for
addition of new, non-redundant records. It is also possible to link
the species TaxIDs to taxa below the species level. However, it
should be kept in mind that the fungal taxonomy is in constant
flux—taxa previously considered variants of a single species may be
reclassified into separate species in the future. While automatically
curated databases like EID2 (Wardeh et al., 2015) are relatively easy
to update and scale, we note that they may be prone to errors intro-
duced by the automated protocol used. Manual curation is not fully
error-free either, but we see it as a necessary step to maximize the
quality of the collected labels. Both approaches are complementary
and may be best suited for different use-cases.

We show that both BLAST and ResNet can accurately predict if
a fungus is a human pathogen based on its genome. Notably,
ResNets offer a major reduction in inference time (up to 700-fold),
both when used on GPUs and on CPUs. Although speed-optimized
tools such as read mappers and k-mer-based taxonomic classifiers
could be even faster, they have been shown to underperform in the
context of novel pathogen detection (Bartoszewicz et al., 2021b;
Deneke et al., 2017). The read-level performance is admittedly low
for predicting a fungal host, but the trained representations allowed
us to visualize the taxonomic diversity of the database along its
phenotypic landscape. As expected, the apparent fungal host-range
signal seems to be related to, but not fully reducible to the fungal
taxonomy. Most importantly, multi-class networks detecting fungal,
bacterial or viral pathogens noticeably outperform the homology-
based approach. Different extraction protocols can affect the rela-
tive yield of bacterial and fungal DNA (Fiedorová et al., 2019), but
the methods investigated here process one sequence at a time, so are
not affected by this kind of bias. Further work could extend the pre-
sented multi-class setup to Nanopore reads, as shown for bacterial
and viral models (Bartoszewicz et al., 2021a), enabling selective
sequencing of mixed-pathogen samples.

Full genomes can be represented by aggregating representations
of reads originating from each genome. In addition to that, we

Table 1. Performance on the multi-class dataset, read pairs

Acc. F1 Prec. Rec. AUPR

All classes Four-class ens. (ours) 87.6 87.7 87.7 87.6 93.4

BLAST 78.3 84.0 90.6 78.3 –

Non-pathogens Four-class ens. (ours) 77.4 78.7 80.1 77.4 86.7

BLAST 66.5 71.6 77.5 66.5 –

Path. bacteria Four-class ens. (ours) 87.2 85.1 83.2 87.2 90.4

BLAST 83.8 87.5 91.6 83.8 –

Human viruses Four-class ens. (ours) 90.9 93.7 96.7 90.9 98.4

BLAST 78.9 87.9 99.2 78.9 –

Fungi Four-class ens. (ours) 95.0 92.9 90.9 95.0 97.9

BLAST 84.1 88.9 94.2 84.1 –

Notes: The four-class classifier includes the fungi class along the three viral and bacterial classes included in the three-class classifier. The best performance for

each class is marked in bold. In this setting, the true positive rate corresponds to the rate of correct assignments within a given class. Hence, recall is equal to ac-

curacy for each class. We use the F1 score as an additional measure. As expected, BLAST’s predictions are very precise, since when it finds a match, it is usually a

relevant one. This does not hold for the non-pathogen class, which could indicate confusion between bacteriophage and bacterial pathogen reads. Our classifier

significantly outperforms BLAST in terms of recall and prediction accuracy for all classes. BLAST, representing the estimated upper bound on performance of

homology-based approaches, yields no predictions for 12.5% of all read pairs. Acc., accuracy; F1, F1 score; Prec., precision; Rec., recall and AUPR, area under

the PR curve (best in bold).

Table 2. C.auris sequencing run, SRA accession SRR17577041

Acc. Rec. Pred.

First read Four-class ens. (ours) 86.7 86.7 100.0

Four-class (ours) 86.7 86.7 100.0

BLAST 49.8 49.8 50.2

STAT 2.5 2.5 7.7

Both reads Four-class ens. (ours) 93.2 93.2 100.0

Four-class (ours) 92.6 92.6 100.0

BLAST 56.4 56.4 57.1

STAT 1.7 1.7 5.4

Notes: As this is a pure pathogen sample, accuracy and recall are equiva-

lent. We report performance metrics for the first mate and both mates. The

mean sequencing quality for the second mate was low (below 28). This is a

problem especially for STAT, which performs worse if both reads are counted

than if only the first, higher-quality mate is considered. BLAST and ResNets

are more robust. ResNets are the best methods overall. Acc., accuracy; Rec.,

recall and Pred., prediction rate (a fraction of reads with any hits).
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observe that coverage as low as 0.08 is enough to correctly classify a
species. Taken together, those two facts warrant a view of a species
genome as a distribution generating subsequences (i.e. reads) origi-
nating from it; such a distribution can also be considered in an ab-
stract representation space (Supplementary Note S4). This concept
is very similar to that of a k-mer spectrum, where an empirical distri-
bution of k-mers is used as a signature of a longer sequence to enable
alignment-free comparisons (Zielezinski et al., 2017), including
being used as input features for machine-learning approaches as in
Deneke et al. (2017). However, k-mer spectra operate in the se-
quence space only. Classifiers based on aggregated representations
are approximately equivalent to classifiers based on aggregated pre-
dictions, although this relation is modulated by the standard devi-
ation of the respective, genome-specific distribution. A somewhat
related effect was reported in the context of competing design
choices for neural networks equivariant to DNA reverse-comple-
mentarity—models averaging the predictions for both DNA strands
were found to be approximately equivalent to models applying a sig-
moid transformation to an average of logits (Zhou et al., 2021). The
probabilistic view of genome representations presented here deserves
deeper investigation; this could potentially lead to a development of
useful embeddings also for whole, multi-species samples.

Although we focus on using the collected data in a pathogenic
potential prediction task, the database itself can find future applica-
tions beyond this particular problem. Genomes collected here can be
a valuable resource for functional and comparative genomics of
fungi. For example, fungal genomes could be scanned for regions
associated with their ability to colonize and infect humans, as shown
previously for bacteria and viruses (Bartoszewicz et al., 2021b). On
the other hand, the multitude of genomic features present in fungal
genomes, often including intron features and regions without obvi-
ous functional annotation, renders the validation of such an ap-
proach a challenging project on its own. This could be perhaps
facilitated by focusing exclusively on coding regions, which should
in principle carry a stronger phenotype-related signal, at the risk of
omitting potentially relevant, non-coding (e.g. regulatory) elements.
As a source of curated labels, the dataset could also support applica-
tion of proteomics to fungal pathogen research. Computational
metaproteomics and proteogenomics approaches enable analysis of
microbial communities based on mass spectrometry data and can be
co-opted for pathogen detection workflows independent of DNA
sequencing (Renard et al., 2012; Schiebenhoefer et al., 2019, 2020).

In conclusion, we compiled a comprehensive database of fungal
species linked to their host group (human, non-human animal or
plant), evidence for their pathogenicity and publicly available
genomes. To highlight the potential uses of the dataset, we bench-
mark two most promising approaches to novel fungal pathogen de-
tection: a deep neural network capable of fast inference directly
from DNA sequences and the gold standard in homology-based
pathogen identification—BLAST. The database, hosted at https://
zenodo.org/record/5846345, can be reused for future research on
fungal pathogenicity. The models, read sets and code are available
at https://zenodo.org/record/5711877, https://zenodo.org/record/
5846397 and https://github.com/dacs-hpi/deepac.
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